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ABSTRACT Electrochemical detection is widely used in biosensing fields, such as medical diagnosis and
health monitoring due to its real-time response and high accuracy. Both passive and active electrodes and
the corresponding readout circuits have been continuously improved over the past decades. This article
summarizes the redox reaction method, state-of-the-art electrode materials, and readout circuits based
on the passive three-electrode. The redox-current-based readout circuits are widely used and developed
toward multichannel high precision and low power consumption. In terms of active electrodes, this article
reviews the development of field-effect transistors (FETs)-based electrochemical detection and readout
circuits. In the past decade, the development of organic electrochemical transistors (OECTs) has also
enabled more precise electrochemical detection.

INDEX TERMS Ion-selective field-effect transistor (ISFET), organic electrochemical transistor (OECT),
potentiostat, three-electrode system, transimpedance amplifier (TIA).

I. INTRODUCTION

ELECTROCHEMICAL detection is widely used in med-
ical diagnosis and health monitoring due to its real-

time response and high accuracy. Accurate and real-time
electrochemical continuous detection is required for drug
guidance, surgical intervention plans, and postoperative mon-
itoring [1], [2]. In addition, electrochemical detection is also
widely used for the daily health detection, such as sweat
analysis [3], [4] and blood monitoring [5], [6], [7], [8].

An electrochemical detector consists of an electrochem-
ical interface and a readout interface. The electrochemical
interface acts as a transducer to convert chemical specifica-
tion into electronic indicators, such as changes in potential,
current, or impedance. The readout interface is used to bias
the current and potential required by the electrochemical
interface and to readout the converted electrical indicators.

The principles of a typical electrochemical interface include
redox reactions and target adsorption [9]. For redox-reaction-
based electrochemical interface, the oxidation and reduction
reactions occur each at two electrodes, which are called
the working electrode (WE) and the counter electrode (CE),
respectively. With a fixed current bias, the WE’s potential
is proportional to the concentration of the analyte, which
can be readout directly by readout circuits. The CE is usu-
ally an inert electrode that provides a reference. However,
limited by current control requirements, the potential read-
out circuit suffers from a low sensitivity, which limits its
application potentials [10]. In recent years, current readout
circuits typically utilize a three-electrode system to detect
the Faradaic currents generated by electron exchange during
redox reactions. In addition to the WE and CE where redox
reactions take place, a reference electrode (RE) is added to
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provide a stable and constant potential. The designs of the
three-electrode system have been continuously optimized for
lower cost, faster speed, and higher accuracy [11], [12], [13],
[14], [15].
On the other hand, the impedance of an adsorption-based

transducer changes by absorbing or binding target molecules
to the transducer. The readout circuits for applying volt-
age and finding current are widely used as the impedance
readout interface. The adsorption-based transducer has been
used in transistor designs which turns the concentration into
the changes of the transistor’s threshold voltage or chan-
nel conductivity. A typical representative is the ion-selective
field-effect transistor (ISFET). Benefiting from the high inte-
gration levels guaranteed by the process, readout circuits of
ISFET are becoming fully integrated systems [16]. ISFET-
based sensing is widely used for ion imaging [17], [18] and
DNA sequencing [19], [20], [21]. In the past decade, break-
throughs in organic electrochemical transistors (OECTs)
have also enabled electrochemical detection with higher
precision [22], [23], [24]. However, certain challenges of
these electrochemical sensors still remain unanswered. From
a technological point of view, the main challenges are related
to the enhancement of their sensing performance (robustness,
selectivity, sensitivity, reliability, etc.) and the reduction of
their dimensions and power consumption. Although nano-
materials provide decent electrochemical and mechanical
properties [25], they still suffer from electrical instability
since it is difficult to control the number, size, and shape
of their nanostructures [26]. Efforts should also be made
for optimizing the flexibility and stretchability of wearable
electronics to provide intimate integration to soft tissues
and overcome potential inflammatory response [27]. In addi-
tion, a more reliable electrode system with its corresponding
readout interface and packaging strategy will improve the
long-term stability of these devices in liquid environments.
In the future, advanced material strategies and circuit designs
will hold great promise for improving the performance of
these electrochemical systems.
The remainder of this article is organized as follows.

Section II introduces the redox-reaction-based electrochem-
ical interface and the corresponding three-electrode-based
readout interface circuits. Section III introduces the devel-
opment of ISFETs and OECTs and the follow-up of the
readout interface circuits. Section IV concludes the entire
work.

II. REDOX-BASED ELECTROCHEMICAL INTERFACE
A. REDOX MEASUREMENT PRINCIPLES
As shown in Fig. 1(a), when controlling the redox current,
Iredox, one can readout the potential Vcell, which allows the
calculation of species concentrations. The voltage between
WE and RE is denoted as Vcell, which is related to the analyte
concentrations and is described by the Nernst equation [29]

Vcell = V0
cell +

RT

nF
ln

(
[Red]

[Oxi]

)
(1)

FIGURE 1. Experimental arrangement for (a) potential-readout and
(b) current-readout experiments (adapted from [28]).

where V0
cell is the standard potential of a half-reaction, R

is the universal gas constant, T is the absolute temper-
ature, and n is the number of electrons involved in the
half-reaction and F is Faraday’s constant. [Red] equals the
activity of the reduced species. [Oxi] equals the activity of
the oxidized species. However, the interference of the charg-
ing current of the electrode-solution interface double-layer
capacitor Cwe is difficult to be filtered out, which results in
low sensitivity [28].
Fig. 1(b) shows the experimental arrangement for current-

readout experiments. When the bias circuit at RE has a large
impedance, the current flowing through Rre is almost 0. The
RE provides a stable and constant potential compared to the
WE and avoids the deterioration of the sensing performance.
The current generated by redox reactions is directly propor-
tional to the concentration of the analyte. The correlated
current flow can be described by the Cottrell equation as
shown in the following [30]:

Iredox = nFAc

√
D

π t
(2)

where Iredox is the current at time t. n is the number of
electrons involved in the reaction. F is Faraday’s constant,
A is the geometric area of the WE, c is the concentration
of the oxidized species, and D is the diffusion coefficient of
the oxidized species.
In general, amperometric and voltammetric techniques are

the most common methods used to trace the variation of the
redox current. Amperometric sensors depend on the contin-
uously current measurement stimulated by a stable potential
controlled of Vcell. As one of the most commonly used type
of electrochemical sensors, amperometric sensors exhibit
rapid robustness, excellent sensitivity, and low detection
limit, which is the smallest amount of the analyte that can
be reliably detected by the device [31]. However, interfering
species that have lower oxidation potentials than the applied
voltage could be oxidized during the measurement, causing
the amperometric sensors to suffer from poor selectivity [9].

In voltammetric sensors, electrochemical characteristics of
the analyte are collected by measuring the current over a con-
trolled variation of the applied voltages [32]. For example,
the potential at which the target analyte begins to be oxi-
dized or reduced can be recorded via voltage sweeping when
the resultant current shows a peak or trough due to the mass
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TABLE 1. Summary of recent electrochemical sensors of electroactive biomarkers.

transport effect. Different time–voltage relationships result
in different voltage shapes including linear sweep voltam-
metry (LSV), cyclic voltammetry (CV), differential pulse
voltammetry (DPV), and square-wave voltammetry (SWV).
In LSV, voltage is scanned from a lower limit to an upper
limit in only one direction (either positive or negative) with
a preset sweeping rate. CV changes the sweep direction at a
fixed rate between two values to generate cycles, in which
case the target analyte may undergo multiple redox cycles.
Therefore, a reversible electrochemical process recorded by
CV has a well-defined feature. CV is a powerful electro-
chemical technique widely used for investigating the redox
processes and relevant characteristics (e.g., redox potentials
and electrochemical rate constant) involved in the electro-
chemical reaction of interests [33]. DPV can be used to
obtain accurate and reproducible values of the redox potential
with higher selectivity and sensitivity. In the DPV experi-
ment, the amplitude of the current is measured in a forward
pulse and a reverse pulse, and the current difference between
the forward and reverse pulses is recorded. Therefore, the
influence of capacitor current is minimized by the subtrac-
tion of current [34]. SWV derives the I–V characteristics
from the application of the potential in the form of rect-
angular waves. SWV can achieve better capacitor current
suppression for higher sensitivity while requiring less time
per scan than DPV [35].

B. ELECTRODE MATERIALS
As redox reactions only occur at the surface of the WE,
materials have a significant impact on the performance
of the electrochemical analysis. Typically, these materials
should exhibit ideal electrical conductivity, chemical inert-
ness, mechanical properties, and low background current
resulting from redox reaction under the applied potential.
Noble metals (Au, Pt, Ag, Pd, etc.), and carbon-based mate-
rials (glassy carbon, carbon nanotubes, graphene, carbon
nanofibers, etc.), metal–oxides (ZnO, WO3, TiO2, CeO2,
etc.) are the main materials used for WEs [50], [51]. Other

2-D nanomaterials, such as black phosphorus (BP), MXenes,
and transition metal dichalcogenides (TMDCs) which have
high electroactive surface area, have also shown significant
improvement in performance of sensors [52], [53]. In addi-
tion, some efforts have been made on the modification of
the WEs to achieve fast electron transfer kinetics, increased
sensitivity and selectivity and stable electrode surfaces [54].
Inert conducting materials (e.g., platinum or graphite) are
often utilized as CEs and the normal hydrogen electrode
(NHE), saturated calomel electrode (SCE), and saturated sil-
ver/silver chloride electrode (Ag/AgCl) are most commonly
used for REs.
Based on these materials, electrochemical sensors have

wide applications in health care, disease diagnosis, envi-
ronmental monitoring, food evaluation, and drug delivery
by identifying or detecting biomarkers of interest (e.g.,
dopamine, nitric oxide, glucose, lactate, etc.). Table 1
presents the list of recent electrochemical sensors, materi-
als, target analytes, and the detection range. However, it still
remains a challenge to accurately monitor these biomarkers
in biological systems since their concentrations significantly
vary in different organs or tissues [55] and most of them
exhibit a short half-life time ranging from milliseconds to
minutes.

III. THREE-ELECTRODE BASED READOUT INTERFACE
The readout interface used for voltage (Vcell) biasing and
current (Iredox) readout in a three-electrode system is called
a potentiostat. Typical three-electrode potentiostats include
a resistance feedback TIA (R-TIA), a capacitance feedback
TIA (C-TIA), and the current mirror (CM) circuits. R-TIAs
and C-TIAs circuits convert read redox currents to voltages
and ADCs are used for conversion from analog voltages
to digital signals. As for the CM circuits, after mirroring
the current to be measured, the current is converted into
frequency or other electrical parameters. The TDCs are used
to quantize time signals into digital signals.
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FIGURE 2. Single-ended potentiostat with the WE is connected to the virtual ground.

FIGURE 3. Fully differential potentiostat (adapted from [56]).

A. RESISTIVE FEEDBACK CURRENT READOUT
CIRCUITS
The most popular resistive feedback potentiostat is a single-
ended circuit, as shown in Fig. 2. The electrochemical
reaction potential Vcell = VWE − VRE. The potential of WE,
VWE, is connected to the virtual ground, while the poten-
tial of RE, VRE, follows the applied voltage VIN. Thus, the
value of Vcell changes with VIN. The output voltage Vout
is proportional to the redox current Iredox and the feedback
resistance. The readout of small currents requires a high con-
version gain for the R-TIA. For example, an input current of
1 pA requires a 1-G� resistor to reach 1-mV output, which
is difficult to be implemented in standard complementary
metal–oxide–semiconductor (CMOS).
Potentiostats need to be able to provide output volt-

ages of different magnitudes for different chemical analytes.
However, the operation of a single-ended potentiostat is
limited by the swing of the control amplifier for low-
supply voltage chip applications and can be affected by
common-mode interference. In order to adapt to various
scenarios and solve the problem of small output swing
of single-ended potentiostats in low-voltage applications,
Ghodsevali et al. [56] and Martin et al. [57] proposed the
potentiostat with a fully differential structure, as shown in
Fig. 3. Rsense is used as a current sampling resistor, and Rsym
keeps the circuit structure symmetrical. This structure nearly
doubles the output swing of the voltage-controlled amplifier,
as shown in

SFD = 2|VDD − VSS| Rwe
Rwe + 2Rsym + Rce

. (3)

This allows the potentiostat to accommodate a larger
dynamic output range of the sensor. In addition, the fully dif-
ferential structure can better suppress common mode noise.

FIGURE 4. Schematic of the pseudo-resistor elements in series (adapted from [58]).

This structure is difficult to apply to the detection of small
currents. Rsense should not be too large to reduce the volt-
age drop. Besides, Rsense and Rsym are directly connected
in series in the WE and CE loops, and their thermal noise
introduces a large input error.
In order to integrate large resistors on-chip, a pseudo-

resistor can be considered. The traditional pseudo-resistor
structure consists of two back-to-back MOS transistors as
diodes. When they work in the weak inversion region
and there is no dc current, a high equivalent resistance
value can be achieved. However, the PVT (process, voltage,
and temperature) robustness of traditional pseudo-resistors
is poor. Besides, when the dc current is nonzero, the
noise performance is worse than that of normal resistors.
Therefore, Djekic et al. [58] proposed an improved pseudo-
resistive feedback TIA, as shown in Fig. 4. Djekic et al. [58]
described a method of connecting pseudo-resistance elements
in series to reduce mismatch and improve the linearity by
reducing the voltage drop over the pseudo-resistance unit.
At the same time, the series connection of pseudo-resistor
elements forces it to work in the linear region to reduce
the spurious noise. The silicon on insulator (SOI) technol-
ogy reduces parasitic effects and alleviate stability problems.
The transimpedance value can be adjusted between 1 M�

and 1 G� with corresponding bandwidths from 8 kHz to
2 MHz. The 1-M� transimpedance change is less than 10%
over a temperature range from −40 ◦C to 125 ◦C.

B. CAPACITIVE FEEDBACK CURRENT READOUT
CIRCUITS
In order to realize an integrated low-noise potentiostat,
another common practice is to use C-TIA to form an
integrator-differentiator structure. Compared with the R-TIA
with limited resistance size, the C-TIA potentiostat is not
limited by resistance thermal noise, and the input equivalent
noise can be lower [8], [59]. But the leakage current at the
input node will cause the integrator to saturate. There are
two main ways to solve this problem. One is to connect a
switch in parallel with the feedback capacitor to periodically
reset the feedback capacitor. The second is to add a dc feed-
back loop to extract the input low-frequency current. This
allows the integrator to discharge continuously and avoid
saturation.
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FIGURE 5. Capacitive feedback potentiostat.

FIGURE 6. CDS technique (adapted from [60]).

As shown in Fig. 5, the switch-based structure cannot
process the input signal when it is periodically reset. The dc
offset noise usually causes problems such as saturation of
the readout circuit. In order to eliminate the offset error, a
correlated double sampling (CDS) circuit has been applied
to the capacitive feedback readout circuit [60]. CDS circuits
can also reduce 1/f noise. CDS removes low-frequency noise
by sampling the input twice and recording the difference
between the two samples. Fig. 6 shows an example CDS
circuit where two sampling actions are implemented by a set
of switches controlled by two clocks with opposite phases
(ϕ1 and ϕ2).

The ability of this structure to handle small currents at
high frequencies is limited. Dai et al. [61] proposed a self-
timed switched capacitor reset network, as shown in Fig. 7.
Two complementary control signals ϕ1 and ϕ2 are used alter-
nately for Ci1 and Cd1 or Ci2 and Cd2. So, there is always one
capacitor in the working state and the other in the reset state.
The system is self-timed and does not require an additional
reset clock. The reset signal comes from the comparison
of the output voltage of the integrator with the set thresh-
old voltage. Both the integrator and the differentiator are
reset in a charge-conserving manner, which minimizes the
reset transient and recovery time. Furthermore, this configu-
ration has inherent instant switching between voltage mode
and frequency mode, which increases the dynamic range of
the input current. The disadvantage is that at the moment
of reset, the output voltage will have a small pulse due to
mismatch.
Ferrari et al. [62] proposed a dc feedback loop based

on the integrator-differentiator structure, as shown in Fig. 8.
The dc gain of the dc feedback loop is

Gloop = −H(s)
A

1 + s(1 + A)CiRdc
(4)

FIGURE 7. Self-timed capacitive feedback potentiostat [61].

FIGURE 8. Capacitive Feedback potentiostat with dc feedback loop (adapted
from [62]).

where A is the gain of the operational amplifier. At low
frequency, the feedback is strong enough that IDC flows into
Rdc. At high frequency, the feedback fails and dc response
of the output node is zero. Therefore, integrator saturation
is avoided and the output dynamic range is increased. A
large resistance on the order of 1 M�–1 G� is required
to ensure that the dominant pole of the dc feedback loop
is small enough. Ferrari et al. [62] proposed an accurate
current reducer based on a transconductor, as shown by the
dashed box in Fig. 8. Since the dc feedback loop does not
affect the signal of the desired frequency, the linearity of the
resistance on this path is sufficient.

C. CURRENT-MIRROR BASED READOUT CIRCUITS
A CM-based potentiostat is another common current sensing
structure, as shown in Fig. 9. This structure does not directly
convert current to voltage. It mirrors the redox current and
converts the current into a time or frequency signal through
a modulator [13], [63]. However, the noise performance of
the CM readout circuit is usually limited by the optional
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TABLE 2. Performance summary of passive-electrode-based readout interface.

FIGURE 9. Current-mirror-based readout circuits (adapted from [13]).

amplifier of the voltage bias circuit. Chopping techniques
can be used to reduce bias circuit noise [4]. A current com-
pensation circuit can be used to achieve bidirectional current
sensing and output range extension [64]. In order to reduce
the influence of the CM’s channel length modulation effects,
the large channel length or an enhancement CM topology
can be used, such as a cascode or gain-boosted structure.

D. CASE STUDY OF PASSIVE-ELECTRODE-BASED
READOUT INTERFACE
A summary of the performance of passive-electrode-based
readout interfaces is shown in Table 2. For resistance feed-
back TIA(R-TIAs), since the large resistance is difficult to
integrate on the chip, the thermal noise of the resistance
limits the improvement in detection accuracy. An equivalent
large resistance is achieved by using the pseudo-resistor,
which can be used to detect small currents. However, as
mentioned earlier, its PVT characteristics are not stable, and
the high resistance makes it difficult to achieve a large band-
width. Capacitive feedback TIAs (C-TIAs) can achieve low
noise and large bandwidth, but requires additional circuits
to avoid integrator saturation. The design of the TIA-based
potentiostat is a compromise between the performance and

bandwidth. The CM potentiostat features low power con-
sumption, small area, and a large dynamic range of detection
current, making it suitable for multichannel applications.
However, its bandwidth is relatively low and the sensitivity
is relatively poor.

IV. ACTIVE ELECTRODES INTERFACE
In the passive electrode, the Faradaic current of the redox
reaction is modified by the charging current of the double
layer capacitor. As shown in (2), the amplitude of the redox
current is proportional to the area of the WEs, what prevent
scaling down the area.
Active electrodes can change this issue using adsorption-

based transducers. In the past 60 years, carrier-based
ion-selective electrodes have been extensively studied and
combined with the field-effect transistors. The response time
of the ISFET is short. In addition, ISFETs can be fabri-
cated using CMOS technology, opening up new opportunities
for the development of compact system solution [68]. The
first integrated multispecies electrodes, called extended gate
chemically sensitive field effects (EGFETs), were introduced
in 1983 [69]. Organic FETs (OFETs) represent a further
development in materials. The easy functionalization of the
electrodes is guaranteed by synthetic chemical modification.
In the past decade, an OECT demonstrated its advantage
using aqueous media. OECT uses hydrated, ion-permeable
conducting polymers that change the OECT’s conductivity
through reversible ion exchange with electrolytes. High SNR
is guaranteed due to its extremely high transconductance.
In recent years, the main principle of OECT-based electro-
chemical sensors is to amplify redox voltage into current by
utilizing the high transconductance.

A. ISFET AND READOUT CIRCUITS
The first ISFET was introduced by Bergveld in 1972. The
schematic diagram and equivalent circuit of the ISFETs are
as shown in Fig. 10. A typical ISFET consists of three ter-
minals (source, drain, and gate) and an RE. Compared with
three-electrode system, ISFETs exhibit a higher sensitivity
with a smaller size. Only one RE is required to achieve a
biochemical measurement. The working principle of ISFETs
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TABLE 3. Materials and electrical parameters of recent ISFETs.

FIGURE 10. (a) Structure and (b) symbol of ISFET (adapted from [16]).

is based on the variation of the conduction of the channel
adjusted by the potential on the RE. A positive bias applied
on the RE will push the cations away from the gate sur-
face, which results in a negative charge accumulation in the
insolation layer. The charge redistribution on the gate will
influence the threshold voltage (Vth) of ISFETs, leading to
a change of the current IDS. This process can be modulated
by the surface reactions where the species of interest interact
with the gate electrode.
The material studies on the ISFET most focus

on the gate materials. High-k materials (including
Si3N4,AL2O3,HfO2,ZrO2, etc.) are most common used as
gate materials. By redesigning the structure of the device
(e.g., extended gate structure, the Fin-gate structure, and
stacking layers of gates), the performance of the ISFETs
can be further improved. In addition, the modification of
the gate electrode by introducing a microstructure on the
gate or functionalizing with nanomaterials can improve the
response time, sensitivity, and selectivity of the devices [80].
In addition, the functionalization of the ISFET gate gives
more possibilities of the device to detect nonlabelled ana-
lytes, such as glucose, DNA, enzymes, protein biomarkers,
and cell-related secretions or metabolism [80], [81].
For ISFETs, the threshold voltage Vth can be expressed

as [82]

Vth = Eref − � + χ sol − �Si

q
− Qox + Qss + QB

Cox
+ 2φf (5)

FIGURE 11. Schematic representation of ISFET (adapted from [82]).

where Eref is the constant potential of the reference electrode.
� is a chemical parameter, which is a function of the pH
of the solution. χ sol is the surface dipole potential of the
solvent and therefore has a constant value. �Si is the work
function of silicon, Qox is due to the charge accumulated in
the oxide, Qss is the charge at the oxide–silicon interface
due to process defects, QB is the depletion region charge,
and φf is the Fermi potential.
Table 3 summarizes the materials and properties of recent

works on ISFETs and readout circuits. The readout circuit is
critical for the drift and temperature issues of electrochem-
ical sensing using ISFET. As shown in Fig. 11, a typical
constant-voltage and constant-current (CVCC) test circuit
generally biases the ISFET in the strong inversion region to
ensure the linear relationship between Id and VGS. The Id
and VDS of the ISFET are guaranteed to be fixed by I1 and
V1, and VS will be read out as Vout when the pH changes.
The change of source voltage VS is proportional to the pH.
CVCC circuits are immune to capacitive splitting caused
by the passivation capacitors. However, the stability issues
and difficulty in achieving inherent compensation limits the
overall performance [16].
The current mode readout circuit has been widely used

in recent years [83]. As shown in Fig. 12, with proper bias-
ing, both MOS and ISFET in the circuit are biased in the
weak inversion region. There is an exponential relation-
ship between Id and VGS. Therefore, it can be deduced
that the output current Iout is proportional to the H+
concentration as

Iout
Ib1

= e2γ /nUT e−2Vref/UT
[
H+]

(6)
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FIGURE 12. Current-mode readout of ISFET (adapted from [16]).

FIGURE 13. Reconfigurable platform for ISFET (adapted from [84]).

where n is the subthreshold slope parameter. γ is a grouping
of pH-independent chemical potentials and UT is the thermal
voltage [83].
A combination of potentiostats which is used for three-

electrode systems can also be multiplexed with ISFETs as
shown in Fig. 13 [84]. The voltage VD is biased by the poten-
tiostat 1. The voltages VG and VS are biased by potentiostat
2. The current IDS is readout by potentiostat 2.

B. OECT AND READOUT CIRCUITS
The first OECT was reported by White et al. [101] in the
mid-1980s. As shown in Fig. 14, metal electrodes (a source,
a drain, and a gate electrode) and an organic semiconductor
film lying between the source and drain electrodes represent
a typical structure of OECTs. Different from conventional
FETs, OECTs rely on ions injection or extraction from the
electrolyte into the organic films, leading to changes of its
doping state and conductivity.
As a typical material for OECTs, the reversible

doping process of conducting polymer poly(3, 4-
ethylenedioxythiophene) doped with poly(styrene sulfonate)
(PEDOT:PSS) can be described as [102]

PEDOT+ : PSS− +M+ ↔ PEDOT0 +M+ : PSS− + h+

(7)

FIGURE 14. (a) Structure and (b) symbol of OECT.

OECTs based on PEDOT:PSS operate in a depletion mode.
During the operation, a positive gate bias pushes positive
cations (M+) from the electrolyte into the PEDOT:PSS layer
and the hole density in the PEDOT+ is reduced followed
by the decrease of the channel current [103]. Compared
with ISFET in which the physical thickness of the chan-
nel does not tune the performance of the device, volumetric
gating gives OECTs a much larger transconductance than
that of ISFETs up to a certain frequency range (up to kilo-
hertz) [104]. When serving as an electrochemical sensor,
the redox reactions on the gate electrode cause an increase
in the potential at the electrolyte/channel interface which
pumps extra positive cations (M+) from the electrolyte into
the PEDOT:PSS channel [105]. The whole process can be
described by the following equation based on Bernard’s
model [106]:


Vg−eff ≈ 2.30(1 + γ )
κT

2q
log(analyte) + C (8)

where 
Vg−eff is the change of the effective gate voltage
generated by the redox reactions; γ is the ratio between
the electrolyte/channel capacitance and the gate/electrolyte
capacitance; k is the Boltzmann constant, T is the absolute
temperature, q is the charge of an electron, and (analyte) is
the concentration of species of interest; and C is a constant.
Table 4 summarizes active materials and key electri-

cal parameters of recent works of OECTs. Apart from
PEDOT:PSS, other conjugated polymers can also be used to
fabricate the channel of OECTs. These conjugated polymers,
as well as PEDOT:PSS, all exhibit attractive electrical prop-
erties with simple fabrication process. For typical OECTs,
the potential range of both the drain-source voltage (Vds)
and the gate-source voltage (Vgs) is −1 to +1 V. The drain-
source current (Ids) is around few mA to dozens of nA.
Generally, OECTs exhibit a transconductance up to dozens
of mS during operation at low frequencies [104].
OECT has been used for various electrochemical detec-

tions that can be performed using traditional three electrodes
configuration [22], [23], [24]. The readout circuits of the
three-electrode systems are also being used for OECTs.
This requires adding a voltage bias and properly adjust-
ing the range of the readout current. As shown in Fig. 15,
Tian et al. [24] used DAC2 to configure the voltage Vg.
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TABLE 4. Materials and electrical parameters of recent OECTs.

FIGURE 15. Readout circuit for OECT in [24].

Due to the high SNR of OECT, the circuit design has not
been very challenging yet. However, the nonlinearity of the
readout current and the power consumption caused by the
high-current IDS are worth improving. Similar to ISFETs,
OECTs will also develop toward miniaturized and arrayed
applications, which also require adapted readout circuits.

V. CONCLUSION
For decades, electrochemical detection based on redox reac-
tions has been widely used. This article analyzed the
challenges in the electrochemical interface and summarized
the response time required for common analytes and the
corresponding concentration ranges for different electrode
materials, which help the design of readout circuits to achieve
tradeoffs between accuracy, bandwidth, and power consump-
tion. In recent years, the development of active electrodes
has solved many difficulties of passive electrodes in the
improvement of temporal and spatial resolution. This article
also reviewed and analyzed the key performances of ISFETs
and OECTs published in recent years. The readout circuits
of ISFETs require multichannel and adaptive nonideal com-
pensation. There is no published OECT readout circuit, but
it can be expected that the circuit needs to be optimized for
power consumption while maintaining a high signal-to-noise
ratio.
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